Issues in Optimization

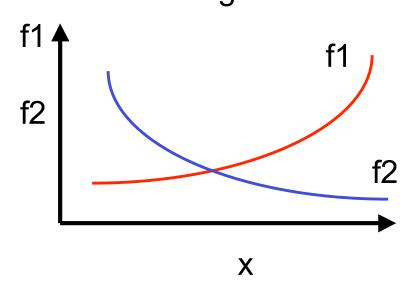
Jaroslaw Sobieski
NASA Langley Research Center
Hampton Virginia

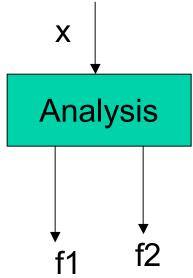
NASA Langley Research Center Hampton, VA 23681; MS240 757-864-2799; j.sobieski@larc.nasa.gov

How to know whether optimization is needed

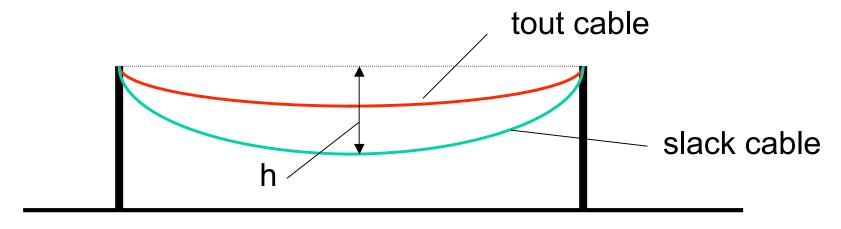
How to recognize that the problem at hand needs optimization.

 General Rule of the Thumb: there must be at least two opposing trends as functions of a design variable

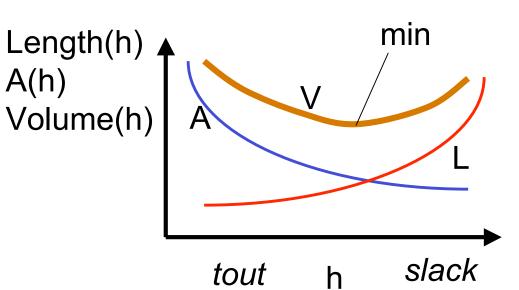




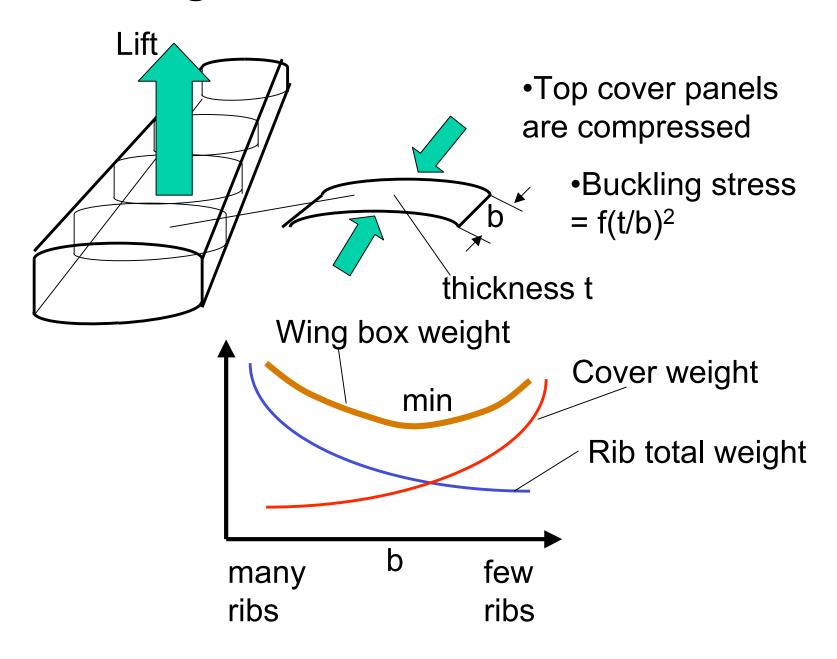
Power Line Cable



- Given:
 - Ice load
 - self-weight small
 - h/span small



Wing Thin-Walled Box

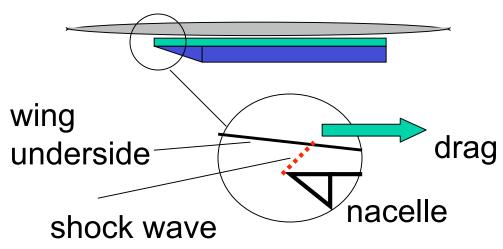


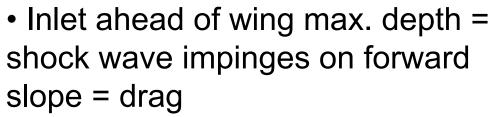
Multistage Rocket fuel drop when burned rocket weight segment min junctions weight 3 number fuel weight of segments

- More segments (stages) = less weight to carry up = less fuel
- More segments = more junctions = more weight to carry up
- Typical optimum: 2 to 4.

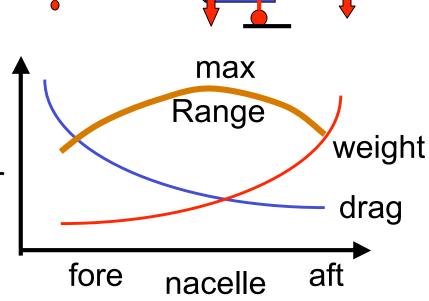
Saturn V

Under-wing Nacelle Placement

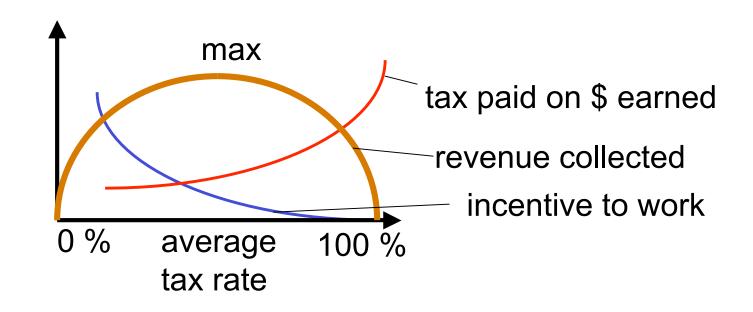




 Nacelle moved aft = landing gear moves with it = larger tail (or longer body to rotate for take-off = more weight

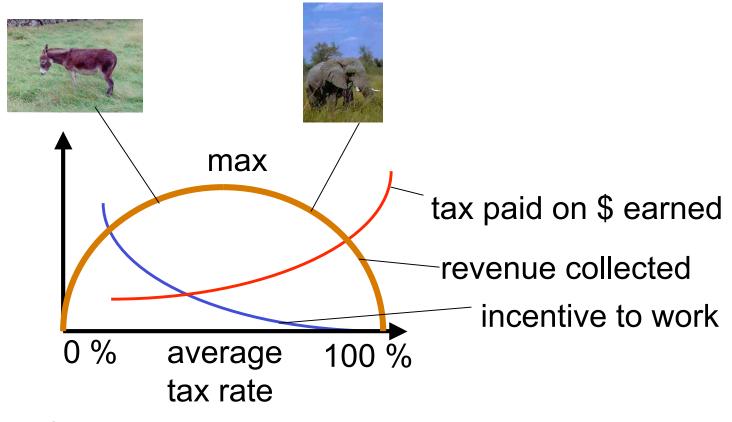


National Taxation



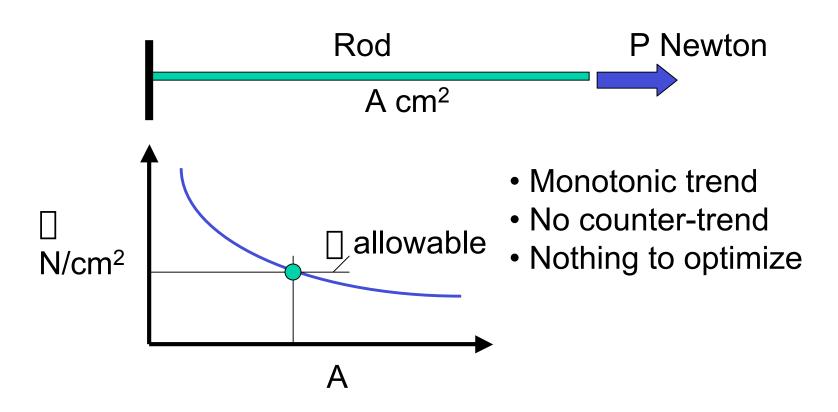
- More tax/last \$ = less reason to strive to earn
- More tax/\$ = more \$ collected per "unit of economic activity"

National Taxation



- More tax/last \$ = less reason to strive to earn
- More tax/\$ = more \$ collected per "unit of economic activity"
- What to do:
 - If we are left of max = increase taxes
 - If we are right of max = cut taxes

Nothing to Optimize

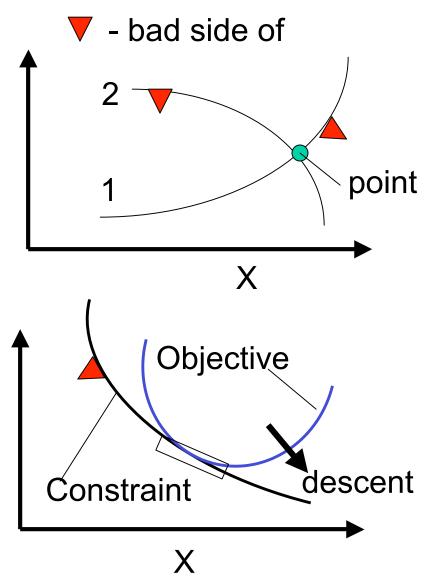


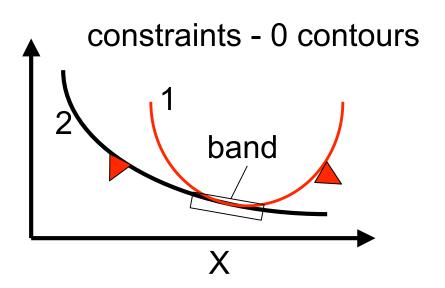
Various types of design optima

Design Definition: Sharp vs.

constraints - 0 contours

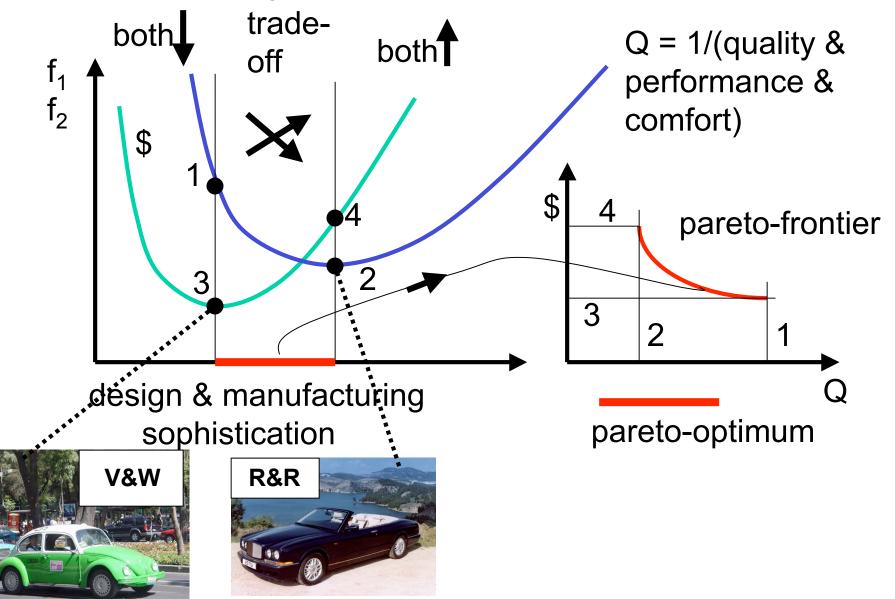
Shallow





- Near-orthogonal intersection defines a design point
- Tangential definition identifies a band of of designs

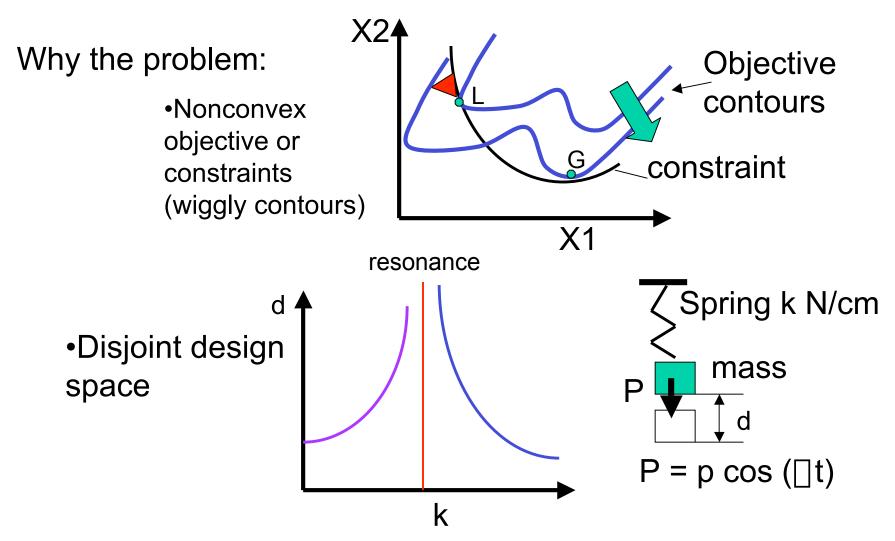
Multiobjective Optimization



A Few Pareto-Optimization Techniques

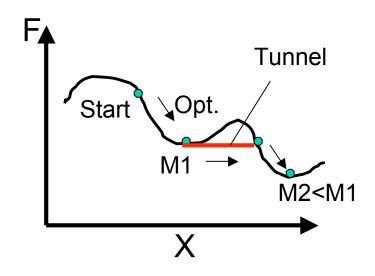
- Reduce to a single objective: $F = \prod_i w_i f_i$ where w's are judgmental weighting factors
- Optimize for f₁; Get f*₁;
 - •Set a floor f₁ >= f*_i; Optimize for f₂; get f₂;
 - Keep floor f₁, add floor f₂; Optimize for f₃;
 - Repeat in this pattern to exhaust all f's;
- The order of f's matters and is judgmental
- Optimize for each f_i independently; Get n optimal designs; Find a compromise design equidistant from all the above.
- Pareto-optimization intrinsically depends on judgmental preferences

Optimum: Global vs. Local



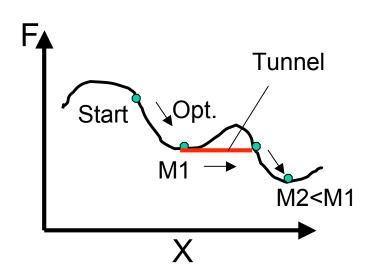
 Local information, e.g., derivatives, does not distinguish local from global optima - the Grand Unsolved Problem in Analysis

What to do about it



•"Tunneling" algorithm finds a better minimum

What to do about it



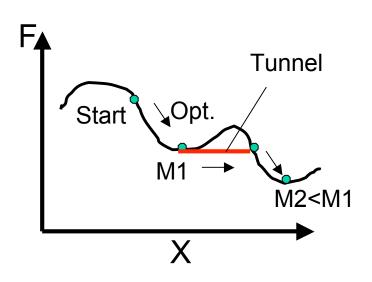
•"Tunneling" algorithm finds a better minimum

shotgun

Multiprocessor computer

What to do about it

A "shotgun" approach:



•"Tunneling" algorithm finds a better minimum

- Use a multiprocessor computer
- Start from many initial designs
- Execute multipath optimization
- Increase probability of locating global minimum
- Probability, no certainty
- Multiprocessor computing =
 analyze many in time of one =
 new situation = can do what could
 not be done before.

Using Optimization to Impart Desired Attributes

Imparting Attributes by Optimization

- Changing w_i in $F = \bigcup_i w_i f_i$ modifies the design within broad range
- Example: Two objectives
 - setting $w_1 = 1$; $w_2 = 0$ produces design whose $F = f_1$
 - setting $w_1 = 0$; $w_2 = 1$ produces design whose $F = f_2$
 - setting $w_1 = 0.5$; $w_2 = 0.5$ produces design whose F is in between.
- Using w_i as control, optimization serves as a tool to "steer" the design toward a desired behavior or having pre-determined, desired attributes.

Larger scale example: EDOF = 11400;

Des. Var. = 126; Constraints = 24048;

Built-up, trapezoidal, slender transport aircraft wing

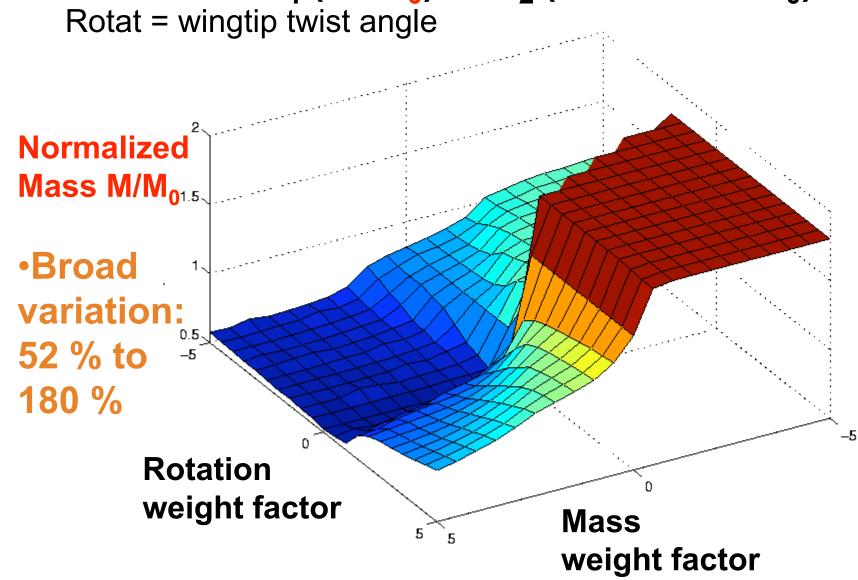
 Design variables: thicknesses of sheet metal, rod cross-sectional areas, inner volume (constant span and chord/depth ratio

Constraints: equivalent stress and tip displacement

•Two loading cases: horizontal, 1 g flight with engine weight relief, and landing.

- Four attributes:
 - structural mass
 - 1st bending frequency
 - tip rotation
 - internal volume

Case: $F = w_1 (M/M_0) + w_2 (Rotat/Rotat_0)$

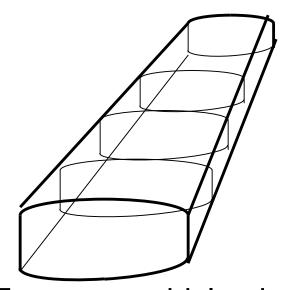


Optimization Crossing the Traditional Walls of Separation

Optimization Across Conventional Barriers

data

Vehicle design

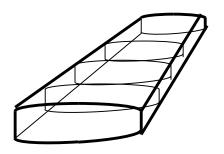


- Focus on vehicle physics and variables directly related to it
- E.g, range;
 wing aspect ratio

Fabrication

- Focus on manufacturing process and its variables
- E.g., cost;
 riveting head speed

Two Loosely Connected Optimizations

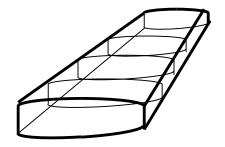


•Seek design variables to maximize performance under constraints of:

Physics

Cost

Manufacturing difficulty

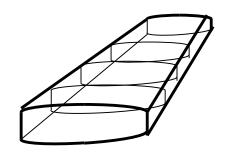


 Seek process variables to reduce the fabrication cost.

The return on investment (ROI) is a unifying factor ROI = f(Performance, Cost of Fabrication)

Integrated Optimization

Required: Sensitivity analysis on both sides



∂Range/ ∂(AspectRatio)

 $\partial \text{Cost}/\partial (\text{Rivet head speed})$

∂(Rivet head speed)/ ∂(AspectRatio)

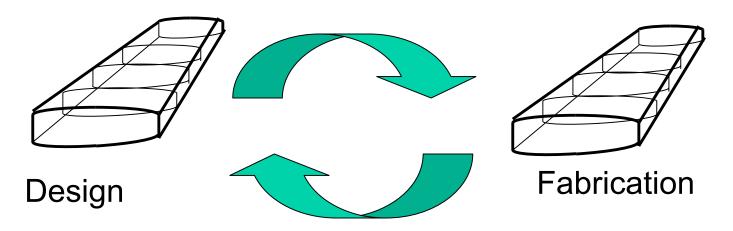
ROI = f(Range, Cost of Fabrication)

 $\partial ROI/\partial AspectRatio = \partial ROI/\partial Cost \partial Cost/\partial (Rivet h.s.) \partial (Rivet h.s.)/\partial (AspectRatio) +$

+ $\partial (ROI)/\partial Range \partial Range/\partial (AspectRatio)$

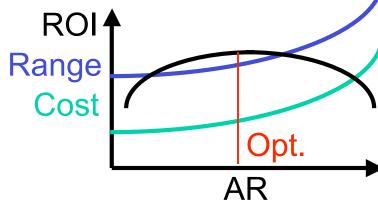
Integrated Optimization Design < --- > Fabrication

Given the derivatives on both sides



• Unified optimization may be constructed to seek vehicle design variable, e.g., AspectRatio, for maximum ROI incorporating AR effect on Range and on fabrication cost.

ROI Range; Cost



Optimization Applied to Complex Multidisciplinary Systems

Multidisciplinary Optimization MDO

Coupling

Decomposition

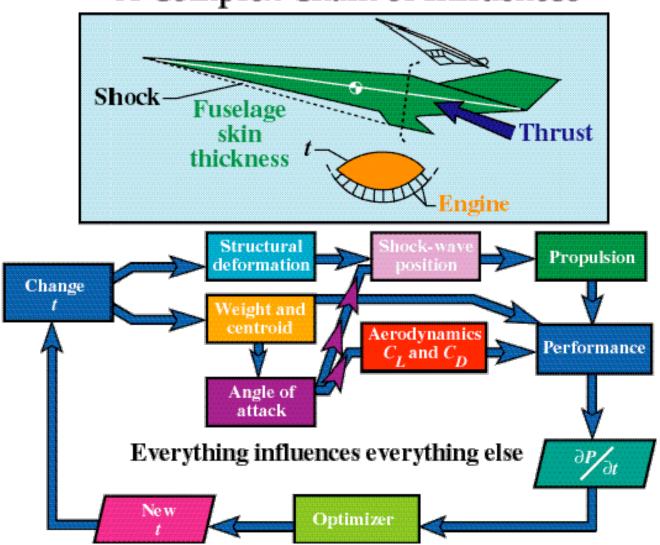
What to optimize for at the discipline level

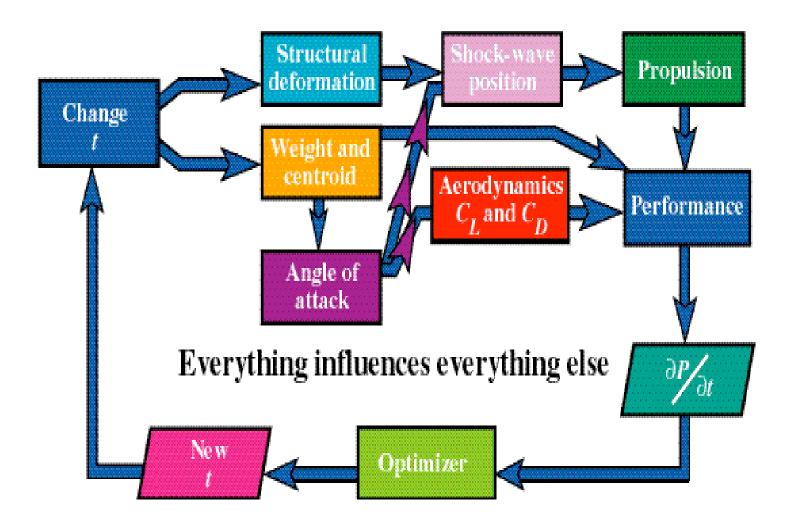
Approximations

Sensitivity

Example of an MDO Problem

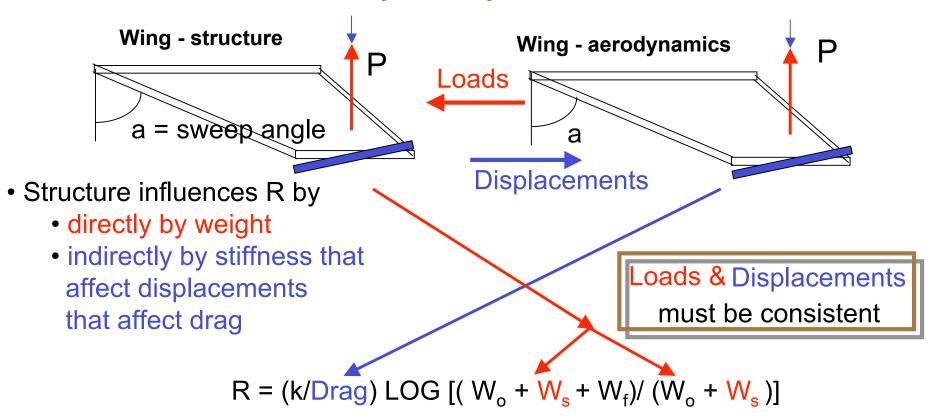
Simple Design Change – A Complex Chain of Influences





Wing drag and weight both influence the flight range R.

R is the system objective

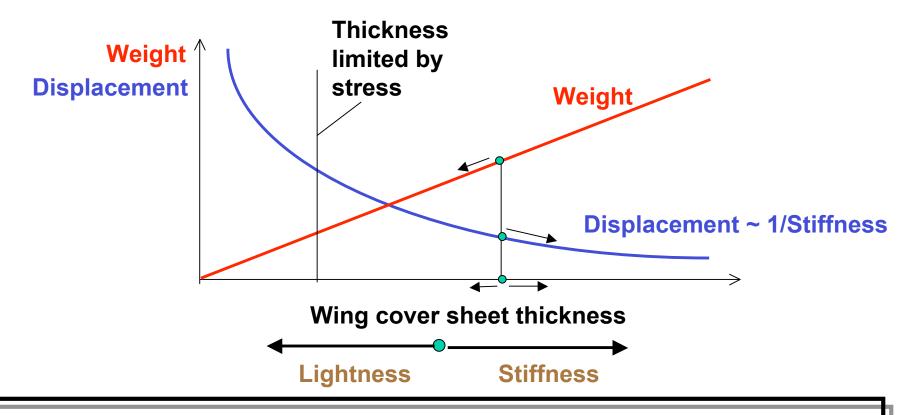


Dilemma: What to optimize the structure for? Lightness?

Displacements = 1/Stiffness?

An optimal mix of the two?

Trade-off between opposing objectives of lightness and stiffness

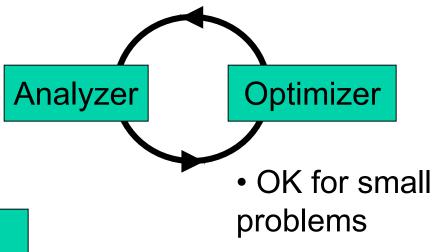


- What to optimize for?
- Answer: minimum of f = w1 Weight + w2 Displacement
- vary w1, w2 to generate a population of wings
- of diverse Weight/Displacement ratios Let system choose w1, w2.

Approximations

• a.k.a. Surrogate Models

•Why Approximations:



Analyzer Human judgment

Approximate Optimizer Model cents

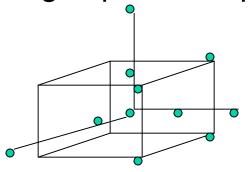
 Now-standard practice for large problems to reduce and control cost

Design of Experiments(DOE) & Response Surfaces (RS)

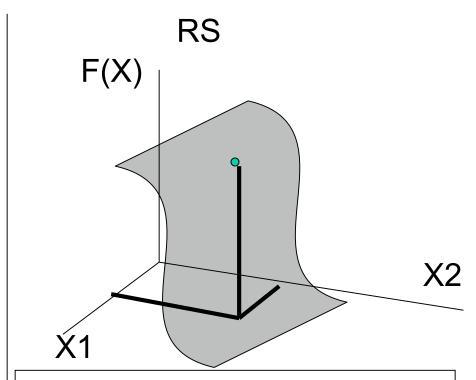
 RS provides a "domain guidance", rather than local guidance, to system optimizer

DOE

 Placing design points in design space in a pattern



•Example: Star pattern (shown incomplete)



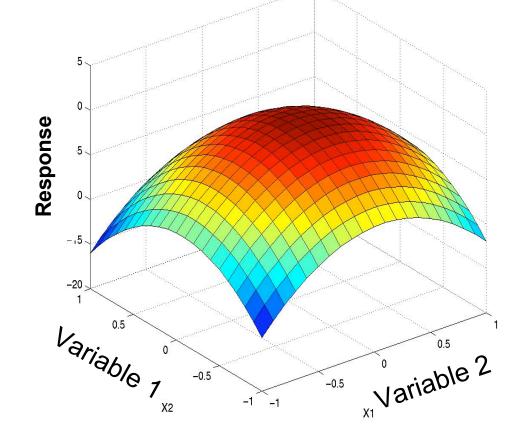
$$F(X) = a + {b}^{'}{X} + {X}^{'}[c]X$$

- quadratic polynomial
- hundreds of variables

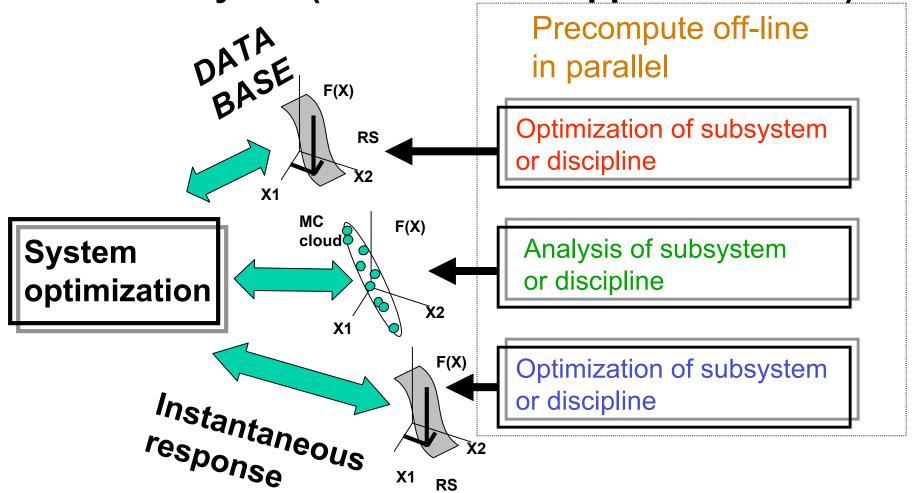
Response Surface Approximation

 A Response Surface is an ndimensional hypersurface relating n inputs to a single response (output).

Design of Experiments (DOE) methods used to disperse data points in design space.



BLISS 2000: MDO Massive Computational Problem Solved by RS (or alternative approximations)



 Radical conceptual simplification at the price of a lot more computing. Concurrent processing exploited.

Coupled System Sensitivity

 Consider a multidisciplinary system with two subsystems A and B (e.g. Aero. & Struct.)

system equations can be written in symbolic form as

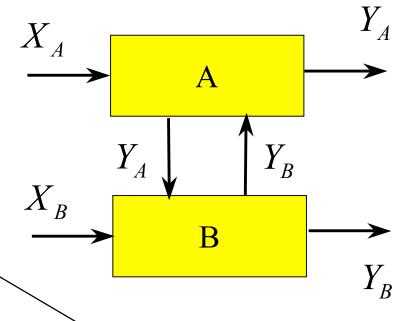
$$A[(X_A, Y_B), Y_A] = 0$$

 $B[(X_{\scriptscriptstyle B},Y_{\scriptscriptstyle A}),Y_{\scriptscriptstyle B}]=0$

rewrite these as follows

$$Y_A = Y_A(X_A, Y_B)$$

$$Y_B = Y_B(X_B, Y_A)$$



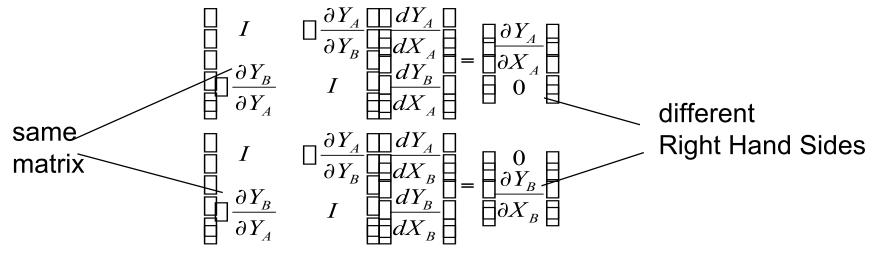
these governing equations define

as implicit functions.

Implicit Function Theorem applies.

Coupled System Sensitivity - Equations

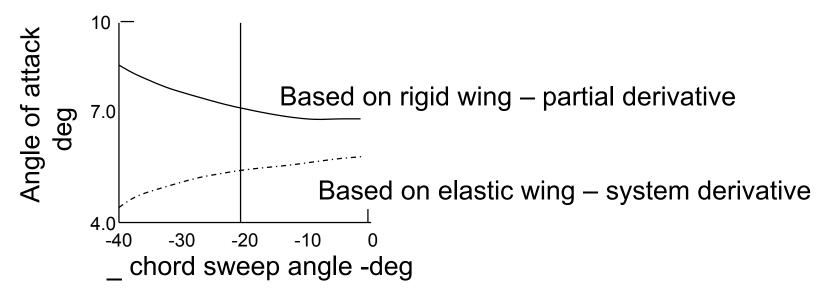
These equations can be represented in matrix notation as



 Total derivatives can be computed if partial sensitivities computed in each subsystem are known Linear, algebraical equations with multiple RHS

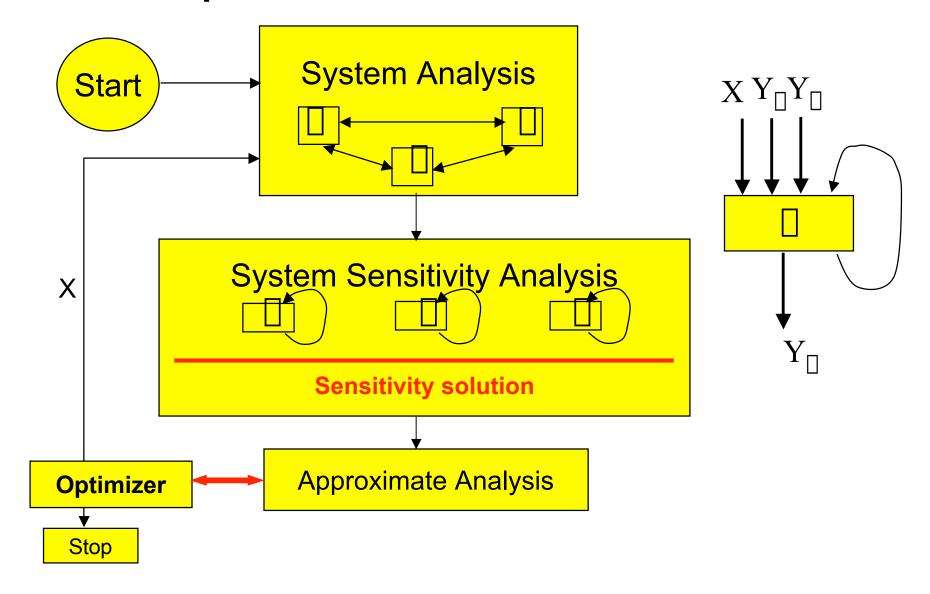
Example of System Derivative for Elastic Wing

Example of partial and system sensitivities

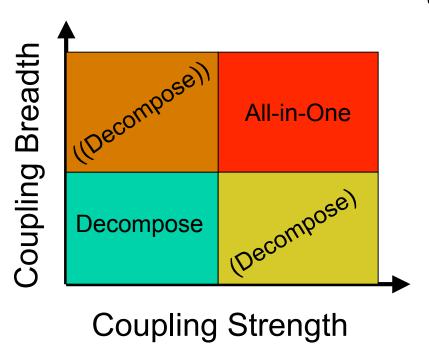


In this example, the system coupling reverses the derivative sign

Flowchart of the System Optimization Process



System Internal Couplings Quantified



- Strength: relatively large
 ∂ YO/ ∂YI
 - Breadth:

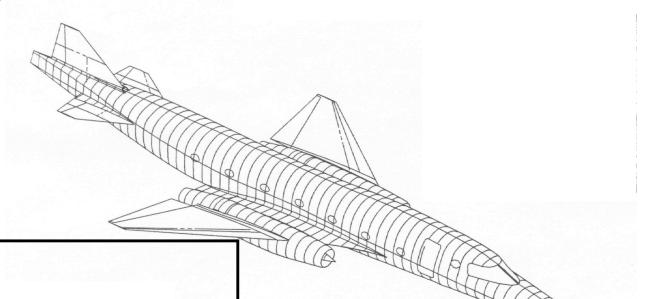
{YO} and {YI} are long

[∂ YO/ ∂YI] large and full

A Few Recent Application Examples

Multiprocessor Computers create a new situation for MDO

Supersonic Business Jet Test Case



- Structures (ELAPS)
- Aerodynamics (lift, drag, trim supersonic wave drag by A - Wave)
- Propulsion (look-up tables)
- Performance (Breguet equation for Range)

Examples: Xsh - wing aspect ratio, Engine scale factor Xloc - wing cover thickness, throttle setting Y - aerodynamic loads, wing deformation.

Some stats:

Xlocal: struct. 18

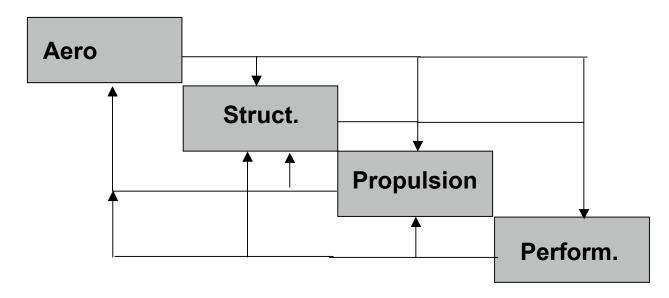
aero 3

propuls. 1

X shared: 9

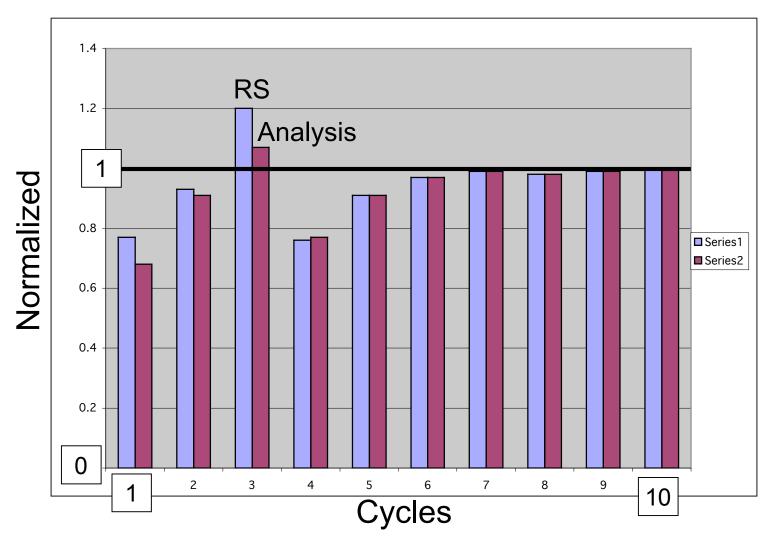
Y coupl.: 9

System of Modules (Black Boxes) for Supersonic Business Jet Test Case



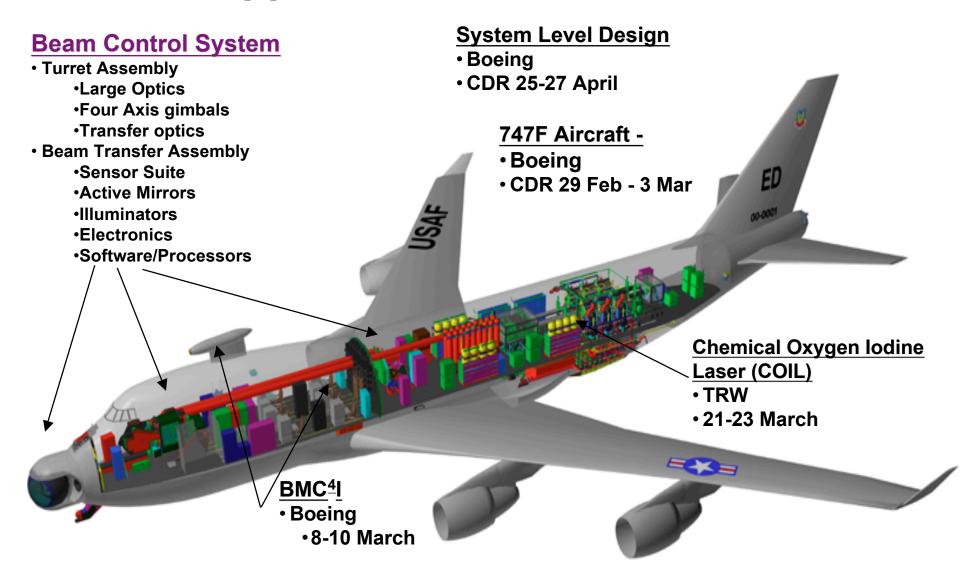
- Data Dependence Graph
- · RS quadratic polynomials, adjusted for error control

Flight Range as the Objective



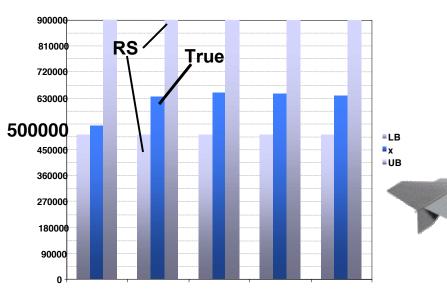
Histogram of RS predictions and actual analysis for Range

Air Borne Laser System Design: another application of the similar scheme



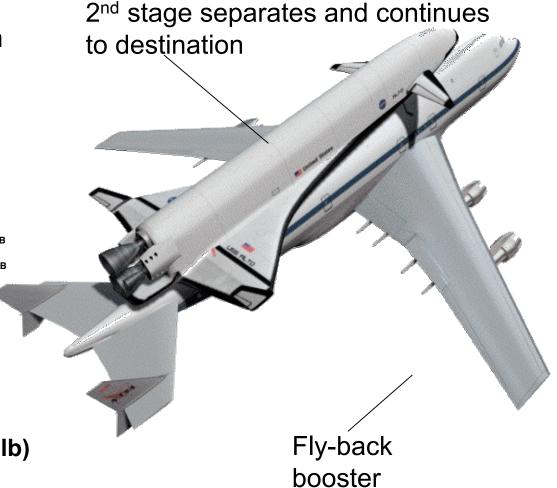
A Candidate for Shuttle Replacement: Two-stage Orbital Transport

 Collaborated with GWU, and ASCAC Branches: System Analysis and Vehicle Analysis



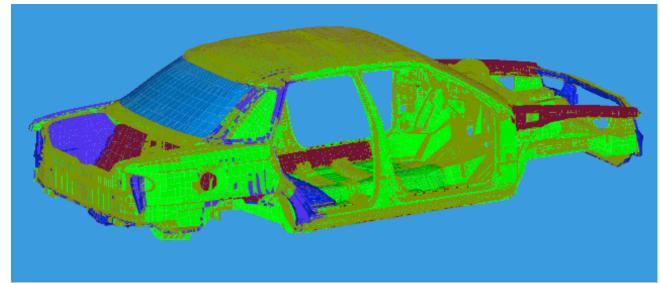
• Result sample: System Weight (lb) Variance over MDO iterations.

Initial design was infeasible



NVH Model

 A Body-In-Prime (BIP) Model - Trimmed Body Structure without the powertrain and suspension subsystems



- MSC/NASTRAN Finite Element Model of 350,000+ edof;
- Normal Modes, Static Stress, & Design Sensitivity analysis using Solution Sequence 200;
- 29 design variables (sizing, spring stiffness);

Computational Performance

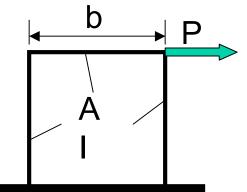
- Fine grain parallelism of Crash Code was an important factor in reducing the optimization procedure total elapsed time: 291 hours cut to 24 hours for a single analysis using 12 processors.
- Response Surface Approximation for crash responses that enabled coarse grain parallel computing provided significant reduction in total elapsed time: 21 concurrent crash analysis using 12 processors each over 24 hours (252 processors total).
- For effective utilization of a multiprocessor computer, user has to become acquainted with the machine architecture.

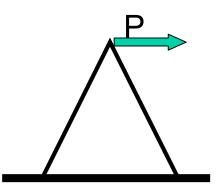
255 days of elapsed computing time cut to 1 day

Computer Power vs. Mental Power

Quantity vs Quality

Invention by Optimization?





 $\{X\} = \{A, I, b\}$; Minimize weight; See b \rightarrow Zero

- Optimization transformed frame into truss
- A qualitative change
- •Why:
 - •structural efficiency is ranked:

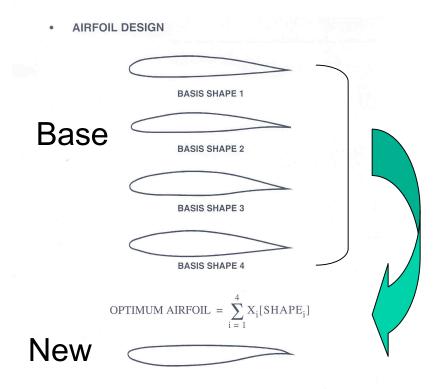
Tension best

Compression

Bending worst

• If one did not know this, and would not know the concept of a truss, this transformation would look as invention of truss.

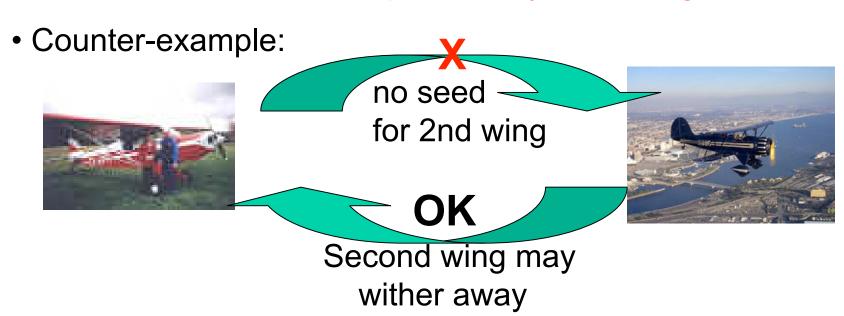
Optimizing Minimum Drag/Constant Lift Airfoil for Transonic Regime



- Drag minimized while holding constant lift by geometrically adding the base airfoils.
- Each base airfoil had some aerodynamic merit
- Result: a new type, flat-top "Whitcomb airfoil".
- If this was done before Whitcomb invented the flat-top airfoil (he used a file & wind tunnel), this would look like an invention.

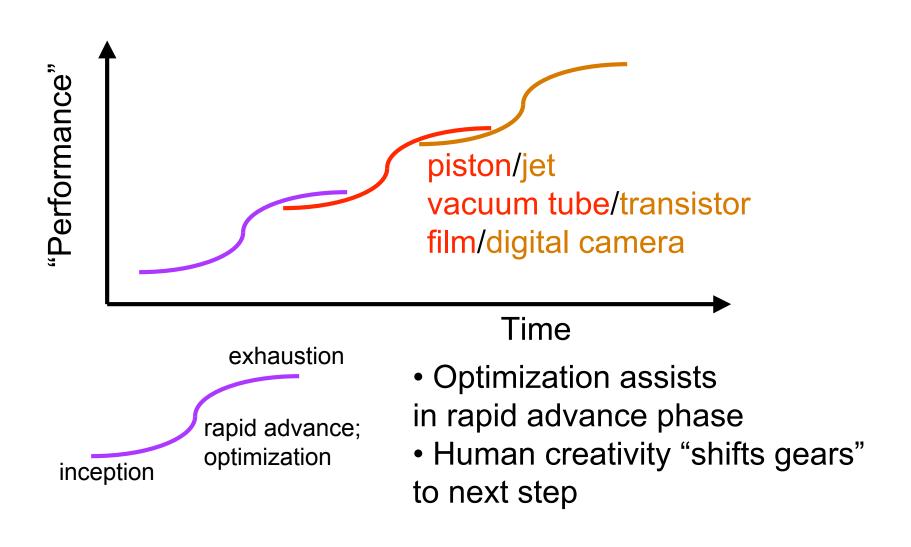
Continuous quantitative transformation vs. conceptual quantum jump

- Common feature in both previous examples:
- Variable(s) existed whose continuous change enabled transformation to qualitatively new design



• Optimization may reduce but cannot grow what is not there, at least implicitly, in the initial design.

Technology Progress: Sigmoidal Staircase

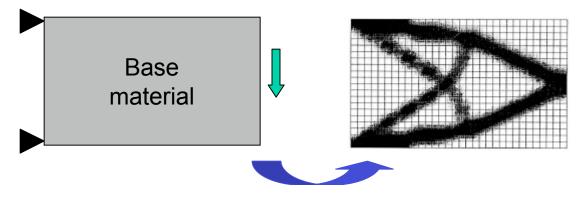


Augmenting number crunching power of computer with "good practice" rules

Topology Optimization

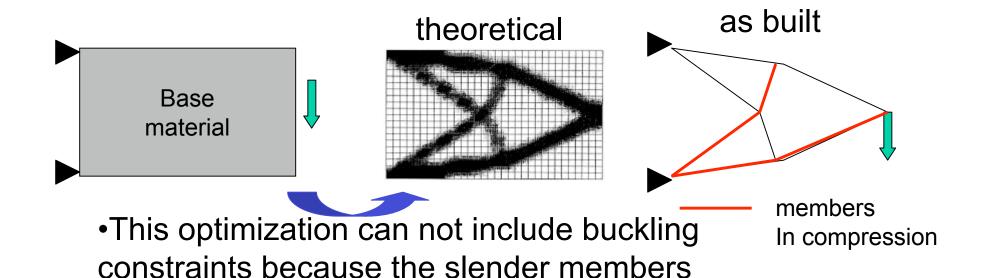
 Modern version of what Michelangelo said 500 years ago: (paraphrased)

"to create a sculpture just remove the unnecessary material"



Topology optimization removes "pixels" from base material

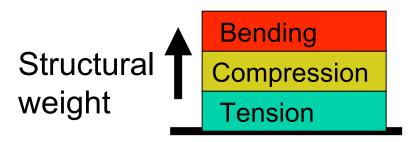
Topology Optimization - 2



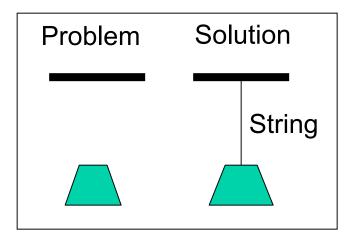
• Subtle point: it is difficult to keep the analysis valid when the imparted change requires new constraints.

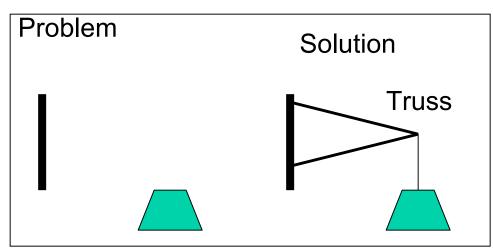
do not emerge as such until the end.

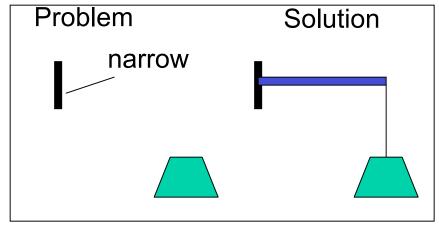
Design by Rules

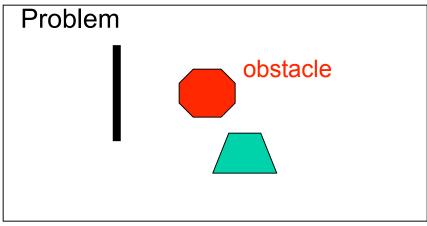


Structural efficiency ranking

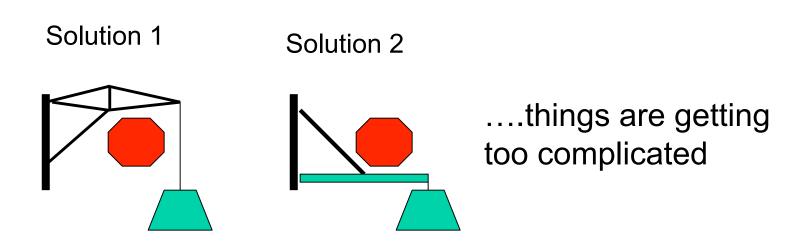






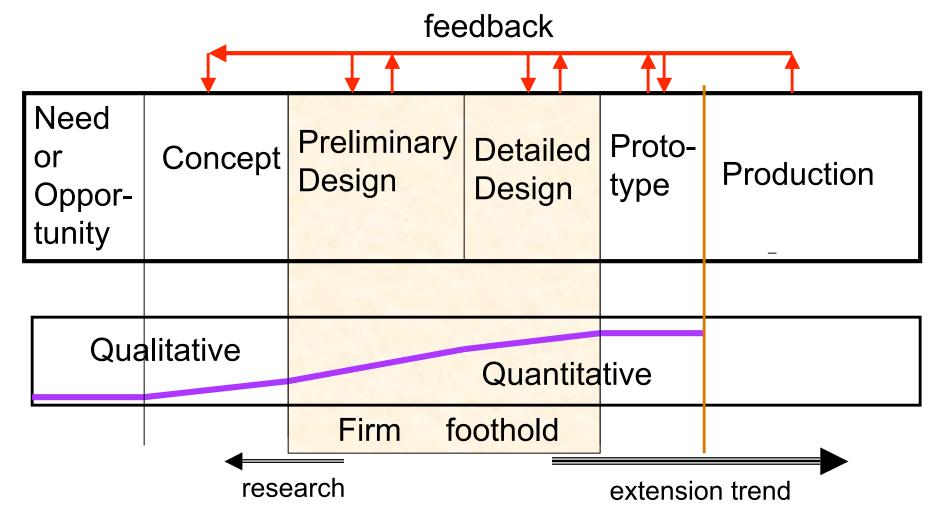


Complications...



- Human eye-brain apparatus excels in handling geometrical complexities amplified by abundance of choices
- By some evidence, eye-brain apparatus may process 250 MB data in a fraction of a second.

Optimization in Design Process



Optimization most useful where quantitative content is high

Closure

- Optimization became an engineer's partner in design
- It excels at handling the quantitative side of design
- It's applications range from component to systems
- It's utility is dramatically increasing with the advent of massively concurrent computing
- Current trend: extend optimization to entire life cycle with emphasis on economics, include uncertainties.
- Engineer remains the principal creator, data interpreter, and design decision maker.

